

Reconciling Surface-Based Aerosol Retrievals with In-situ Aircraft Measurements in the Baltimore-Washington Area during DISCOVER-AQ.

SUZANNE CRUMEYROLLE

L. Ziemba, G. Chen, A. Beyersdorf, L. Thornhill, G. Schuster, E. Winstead, J. Schafer, B. Holben, R. Moore, B. Anderson

AAAR Meeting, Minneapolis, 11 October 2012

<u>Deriving Information on Surface Conditions from</u> <u>Column and VER</u>tically Resolved Observations Relevant to <u>Air Quality (DISCOVER-AQ)</u>

Objectives:

1. Relate column observations to surface conditions for aerosols and key trace gases O_3 , NO_2 , and CH_2O

2. Characterize differences in diurnal variation of surface and column observations for key trace gases and aerosols

3. Examine horizontal scales of variability affecting satellites and model calculations

Deployment Strategy

Systematic and concurrent observations (column-integrated, surface, and vertically-resolved)

NASA UC-12 (Remote sensing) Continuous mapping of aerosols with HSRL and trace gas columns with ACAM

NASA P-3B (in situ meas.)
In situ profiling of aerosols and trace gases over surface measurement sites
→ 247 spirals

<u>Ground sites</u> In situ and remote sensing measurements of trace gas and aerosol

Courtesy of J. Crawford

 $\begin{array}{c} \text{Results} \\ \circ \circ \circ \circ \circ \end{array}$

$\underset{\bigcirc \ \bigcirc \ \bigcirc }{\text{Conclusions}}$

Instrumentation

LARGE Instrumentation

• Aerosol Concentrations:

- Total and Non-Volatile
- CCN spectra
- Aerosol Sizes (10 nm -5µm)
- Chemical Composition
 - filter collection and analyses for ionic content
- Optical Properties:
 - Scattering (Dry and Wet)
 - Absorption Coefficients (Extinction)
 - Single Scattering Albedo

Ground-based Instrumentation

• **MDE sites :** – PM 2.5 – MTO (P, RH, Precip, Temp, RAD, WS, WD) – Gases (O₃, NO_{*},SO₂)

• Aeronet :

- AOD
- Size Distribution
- Angstrom Exponent

Conclusions

- Confidence in the dry size distribution and the scattering coefficient measurements \bigcirc
- Particle loss in the aerosol inlet are likely negligible
- The hygroscopicity model reproduces $\sigma_{\text{ext,amb}}$ quite well.

Introduction $\bullet \bullet \bullet$

Homogeneity of the BL

Ozone measured at the lower level of the P3B ۲ profiles and at the ground sites are similar

 \rightarrow The surface layer is then well mixed and the P3B measurements are representative to the

Results

$\underset{\bigcirc}{\text{Conclusions}}$

Comparison aircraft (P-3B) with PM2.5 measurements

- Time series of PM2.5
 and scattering
 coefficient show a
 strong relationship :
 Beltsville and
 Edgewood (R²> 0.9)
 the correlation
 coefficient is lower at
 Fairhill (R² = 0.89)
- High PM_{2.5} are
 associated with high
 concentration of sulfate
 coming from the Ohio
 river valley (backtrajectories study)

Aerosol Optical Depth (AOD)

- AOD is calculated from the dry and ambient extinction measured on board the P3B.
- Comparison with the PM2.5 measured in an 30 minutes window
- Correlation coefficients are high >0.82 and corresponding to previous studies on the east coast of US

- Different study cases were observed:Well mixed layer
- Uplifted <u>layer</u>

Aerosol Optical Depth (AOD): Vertical distribution

O

- Most of the cases observed during DAQ are 'Well mixed'
- The BL and the BuL are strongly related and the aerosols are really similar → This explain why the relationship shown before is really strong

Knowing the vertical distribution is
crucial to determine the air quality
from the column integrated
measurements

Aerosol Optical Depth (AOD): Relative humidity

Conclusions

- AOD vs PM2.5 gives a good relation but the variability would lead to wrong estimation of the PM2.5
- Including the BLH and the BL contribution show few tendencies →
 BLH is necessary but not enough the contribution has to be known
- RH at the ground is for this region and this period a good approximation → due to well mixed BL and/or BL and BuL strongly related to each other.
- F(RH) effect is secondary compare to the BL contribution but is still important factor of 2 + vertical variability during DAQ is low so the use of a surface measurement of f(RH). Is this always the case ?